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‡ Instituto de Fı́sica, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524,
20550-013 Rio de Janeiro, Brazil
§ Instituto de Fı́sica, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A,
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Abstract. In this paper we study the generation of coherent terahertz phonons in a double-barrier
heterostructure (DBH) under the influence of an external applied bias. The system is characterized
by an energy difference between the two lowest levels in the well, which resonates with the optical
phonon energy, producing a high rate of emission of longitudinal optical (LO) phonons. The strong
electron–phonon interaction in a polar semiconductor leads to the formation of a polaron that is
relevant close to this resonance. Therefore the levels corresponding to the first excited state and
the satellite of the ground state anticross in two polaronic branches. The LO phonon has a very
short lifetime. It decays by stimulated emission of a pair of phonons (LO → L̃O + TA) (where
TA stands for transverse acoustic). As a consequence an intense beam of TA coherent phonons
is produced, which could have several important applications. A rough model of this system has
already been presented (Makler S S, Vasilevskiy M I, Weberszpil J, Anda E V, Tuyarot D E and
Pastawski H M 1998 J. Phys.: Condens. Matter 10 5905). Several improvements to that model
are presented here. Besides the more accurate treatment of the electron–phonon interaction, the
phonon–phonon interaction is considered here taking into account the fact that the whole system
is out of equilibrium. The results confirm that the proposed phonon laser is reliable.

1. Introduction

In the last few years the study of double-barrier heterostructures (DBH) has been of great
interest from the pure and applied points of view. The relevance of DBH to potential new
device applications has been extensively discussed [1].

The pioneering work of Goldman, Tsui and Cunningham [2] has emphasized the great
importance that the electron–phonon interaction has as regards the transport properties in
mesoscopic double-barrier heterostructures. This is due to the fact that for polar semi-
conductors, such as GaAs, the dynamical polarization generated by the LO phonon inside
the well interacts strongly with the electrons moving along the heterostructure [3, 4].

There have been several theoretical studies on this subject, describing the system by
simplified microscopic models solved by using scattering theory [5], the transfer Hamiltonian
[6], the Landauer–Büttiker formalism [7] or the direct diagonalization of a tight-binding
Hamiltonian [8, 9] to obtain the currents flowing under the influence of an external potential.
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A treatment of the many-body effects and of the thermodynamical non-equilibrium problem
assuming a more realistic model was possible using the Keldysh formalism [10]. Quantum
wires and DBH were studied under various conditions such as with applied external magnetic
fields, different doping profiles and barrier symmetries, looking for the enhancement of the
effects produced by the electron–phonon interaction [11, 12].

These studies were concerned essentially with the way in which the electron–phonon
interaction modifies the electronic current. The emission of phonons was a secondary by-
product and, as a consequence, little importance was given to the study of their generation, the
way in which they propagate and their decay process.

We show here that the generation of phonons can be the central phenomenon taking place
in some polar semiconductor DBH under the influence of an external applied potential.

As the electric field is in general large, the system is very far from thermodynamical
equilibrium and it is not possible to study the electrons using concepts such as the Fermi
level, which are appropriate for describing equilibrium situations. In most cases the phonon
population can be considered to be at equilibrium because the electric field does not directly
perturb the bosonic degrees of freedom. This has been the approach taken by almost all of the
works mentioned previously. However, this assumption is not applicable for a system where
almost all electrons suffer inelastic phonon scattering producing a large out-of-equilibrium
phonon population spectrum. This is the case, for instance, for an electronic system possessing
a characteristic energy that resonates with the energy of the phonon degrees of freedom. A
similar situation arises in a resonant tunnelling experiment if the satellite peak is as large
as the main resonance current peak due to a significant barrier asymmetry [11]. In these
circumstances the phonon populations have to be calculated self-consistently, considering the
non-equilibrium situation for both subsystems: electrons and phonons. A rather involved
(although rigorous) way of treating this problem is through the application of the Keldysh
formalism [10].

The paper is organized as follows. In the next section the DBH phonon laser is described.
In section 3 the polaronic model is presented. Section 4 is devoted to showing the method used
to solve our Hamiltonian. In section 5 we discuss the kinetic equations for the populations in
the system. Finally, in section 6 we present the results and our conclusions.

2. The DBH phonon laser

Recently, we proposed a double-barrier phonon laser [13–15]. It was called a saser, as it is in
many respects the phonon analogue of the photon laser beam. The saser could be made, in
principle, from a wide variety of materials. We discuss here the particular case of a structure
made of GaAs–AlGaAs. This material is simple to grow by molecular beam epitaxy. Besides,
in GaAs the decay of LO phonons produces TA phonons [16]. In contrast, in InP the decay of
LO phonons produces a pair of LA phonons [17] that will eventually decay because there are
other phonon branches of lower energy. On the other hand, TA phonons have a long lifetime
and a mean free path greater than 1 mm [18, 19].

The structure that we study, shown in figure 1, consists of a DBH where the two lowest
states localized in the well have energies ε0 and ε1. The system is tailored such that when
the first excited level is above the left-hand Fermi level εLF , �ε = ε1 − ε0 is slightly smaller
than the energy h̄ω1 of the LO phonon in the well. The system is under the influence of an
external applied potential V . If the Fermi level εLF is less than �ε, for some value of the gate
potential V , the level ε0 drops below the bottom of the conduction band and the current is
almost suppressed before the level ε1 falls below the Fermi level. Increasing V , the current
flows through the excited level but, as �ε remains less than h̄ω1, there is still very little phonon



A heterostructure generator of terahertz phonons 3151

0 20 40 60 80 100 120
-100

0

100

200

300

LO

∈
F

∈
0

∈
1

b
l
 = b

r
 = 22.6 Å

d = 203.4 Å
∈

F
 = 15 meV

E
ne

rg
y 

(m
eV

)

Layers

Figure 1. The DBH profile and the electron energy levels close to the resonant condition�ε ∼ h̄ω1.
The width of the barriers (made of AlxGa1−xAs) is 22.6 Å and the width of the well (made of GaAs)
is 203.4 Å.

emission. After scattering with a phonon, there are no empty states available for the electron
to go into which conserve the total energy. However, as �ε increases slightly with V , there is
a value of the bias V0 for which the resonant condition �ε ∼ h̄ω1 is achieved for the electrons
that enter the well. Since electrons remain confined in the well for a long time due to the wide
barriers of the heterostructure, they can decay to the ε0-state by emitting a LO phonon. The
phonon emission is resonant for these values of the system parameters and it is reasonable to
expect a sudden increase of the phonon population.

The LO phonons have a very flat dispersion relation for the wavevector with which they are
generated. Therefore they have a very small group velocity. Moreover, for the Al concentration
considered in this paper (x = 0.4) the LO phonons are also confined inside the well [20, 21]
because their frequency is within the range of the phonon gap of the barriers. Due to this, the
LO phonons can be also absorbed, exciting electrons from ε0 to ε1. This process proceeds
in parallel with the decay of primary phonons due to anharmonicity effects. Their lifetime is
short, preventing them from leaving the well. For a GaAs well they decay by anharmonicity
into a pair of L̃O and TA phonons in the [111] direction [16, 17].

The TA phonons have a very long lifetime [18] and a mean free path of ∼2 mm [19]. These
secondary TA phonons are very interesting because they can constitute an intense coherent
beam that is potentially useful for various applications, mainly in acoustic nanoscopy.

Several review articles relate to the device studied here. The generation of pulses of
terahertz coherent optical phonons was discussed by Merlin [22]. Coherent phonons can
be generated by intense laser pulses [23–27]. A detailed discussion can be found in the
review of Kurz et al [28]. Stimulated emission of phonons and several kinds of saser were
also discussed [30–40]. Among the potential applications of our saser we stress acoustic
nanoscopy [41]. At lower frequencies, acoustic microscopy has a wide range of research and
industrial applications. Recent reviews can be found in references [42] and [43].
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3. The polaronic model

In this section we describe the model used to calculate the electronic current through the DBH
including the influence of the electron–phonon interaction.

In our previous calculation [13] we evaluated the electronic current by using the simplest
formalism, i.e., sequential tunnelling through a single resonant level (the first excited level) in
the well. This is a formalism for resonant tunnelling (because a level in the well appears due
to resonance) valid when other levels are far apart from the ground state. The calculation of
the incoming current did not take into account the effect of the electron–phonon interaction.

This formalism is clearly not accurate for the case in which the energy of the first excited
level in the well is close to the energy of the first satellite of the ground state. This is precisely
the resonant condition studied here. The strong electron–phonon (e–ph) interaction prevents
these levels from approaching. The states corresponding to these levels are mixed by the e–ph
interaction which produces two polaronic levels [3,4]. This situation will be discussed below
in detail.

Our system is described by the Hamiltonian

H = H0 + Hint (1)

where H0 is the single-particle Hamiltonian given by an electronic part He plus the contrib-
utions Hph for the phonons:

H0 = He + Hph. (2)

Hint is the Hamiltonian that describes the electron–phonon and phonon–phonon interactions:

Hint = He−ph + Hph−ph. (3)

The electron–electron interaction is taken into account by solving self-consistently for the level
positions as functions of the accumulated charge. This procedure was discussed in more detail
in reference [13].

3.1. The Hamiltonian for electrons

The electronic system is described by a tight-binding Hamiltonian with nearest-neighbour
hoppings v. The Hamiltonian can be written in the Wannier basis in terms of the electronic
creation and annihilation operators c†

lmjσ , clmjσ at sites lmj with spin σ as

He =
∑
lmjσ

εlmjσ c
†
lmjσ clmjσ + v

∑
〈lmj,l′m′j ′〉σ

(c
†
lmjσ cl′m′j ′σ + c

†
l′m′j ′σ clmjσ ) (4)

where l, m, j = −∞, . . ., ∞ label the positions for the directions x,y, z, respectively.
The system has no magnetic solutions. Therefore the results are the same for both values

of σ and we can drop that subscript. Because the system has translational symmetry in the
directions perpendicular to the growth direction (z), the Hamiltonian can be uncoupled. We
expand the operators clmj in plane waves in the xy-direction:

clmj =
∑

k

cjkeik·xlm . (5)

By doing that, we can treat the system as a sum over 1D Hamiltonians for each wavevector k

perpendicular to the current in the z-direction:

He =
∑

k

{∑
j

εjkc
†
jkcjk + v

∑
〈jj ′〉

(c
†
jkcj ′k + c

†
j ′kcjk)

}
(6)
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i.e.,

He =
∑

k

Hek. (7)

The energies εjk, measured from the bottom of the conduction band of the emitter, are
εjk = εj + εk. The energies εj are chosen to describe the energy profile of the DBH.

For the sake of simplicity we will leave implicit the dependence on k of the cjk-operators.
For each k we separate the electronic Hamiltonian Hek into a part Hz that depends only on j

and another, H⊥, depending only on k:

Hek = H⊥ + Hz (8)

with

Hz =
∑
j

εj c
†
j cj + v

∑
〈jj ′〉

(c
†
j cj ′ + c

†
j ′cj ) (9)

and

H⊥ = εk

∑
j

c
†
j cj . (10)

The last part is, for each k, proportional to the identity. Therefore, we can diagonalize the
one-dimensional Hamiltonian Hz independently of H⊥. We will show first that this one-
dimensional Hamiltonian can be reduced to a homogeneous chain with only two different sites
necessary to describe the DBH.

For the z-direction we separate the space into three regions: the dispersion region and two
semi-infinite homogeneous chains. For j � 0 the planes have energies εj = −2v (v � 0) and
for j � L + 1 the energies are εj = −2v − eV . These values are chosen in order to get the
bottom of the conduction band at h̄ω = 0 for the emitter and at h̄ω = −eV for the collector.
Here L is the length of the DBH. The corresponding eigenstates of these two regions are plane
waves in the z-direction. We disconnect the DBH from the left-hand and right-hand chains.
Therefore we get for this region the profile of an infinite (even not rectangular) well, shown in
figure 2. For this dispersion region we numerically diagonalize the three-diagonal matrix of
order L corresponding to this profile, getting the eigenvalues εm and the eigenvectors |m〉 of
the equation

H′
z|m〉 = εm|m〉. (11)

Here, H′
z is the part of Hz that goes from the beginning of the left-hand barrier to the end of

the right-hand one as indicated in figure 2. Written in the basis of planes this is

H′
z =



ε1 v 0 · · · 0

v ε2 v
...

0 v ε3
. . .

...
...

. . .
. . .

... εL−1 v

0 · · · v εL


. (12)

After the diagonalization we have L levels labelled by m = 0, 0, . . ..
For the right-hand chain we rename planes L + 1, L + 2, . . . ,∞ as planes 1, 2, . . . ,∞;

and for the left-hand one, we rename planes 0,−1,−2, . . . ,−∞ as planes 1, 2, . . . ,∞.
Therefore we get a new picture where we have two semi-infinite chains, the first one
corresponding to the planes j = ∞, . . . , 1 and the other one corresponding to planes
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Figure 2. The profile for the scattering region, when we take for the effective hoppings vjm = 0.

We get a set of discrete levels labelled 0, 0̄, ¯̄0, . . .. Only the two first levels are relevant here.

j = 1, . . . ,∞. Among the L levels obtained from the diagonalization of the matrix (12),
only the two states with lower energies will participate significantly in the electronic transport.
For the conditions for saser action, discussed here, the other levels are far above the Fermi
energy of the emitter. Therefore the dispersion region is represented by m = 0 for the ground
state and m = 0 for the first excited state with energies ε0 and ε0 respectively (which were
called ε0 and ε1 in the introduction).

To connect the DBH with the left-hand and right-hand chains we evaluate the matrix
elements

vjm = 〈j |Hz|m〉. (13)

Only four values are relevant in our calculations: v10, v10, v01 and v01. Finally we get for Hz

Hz =
∑
j

εj c
†
j cj + v10(c

†
1
c0 + c

†
0
c1) + v10(c

†
1
c0 + c

†
0c1)

+ v01(c
†
0
c1 + c

†
1c0) + v01(c

†
0c1 + c

†
1c0) +

∑
j �=1,0,0

v(c
†
j cj+1 + c

†
j+1cj ). (14)

This Hamiltonian is represented diagrammatically in figure 3, in which each point represents
an energy εj and each line a hopping v.

3.2. The phonon Hamiltonian

As is well known [3,29], the dominant dispersion process for electrons in polar semiconductors
is that due to the coupling between electrons and LO phonons. In this work it is essential to
consider the L̃O and the TA phonons resulting from the decay of the LO phonons.

The Hamiltonians HLO, HL̃O, HTA used here are the simplest for each kind of phonon
considering just one mode in the z-direction. In principle, before the system begins to
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Figure 3. The diagram for the hopping terms in the absence of e–ph interaction. The lines represent
the hopping terms. The points represent the plane energies.

exhibit the saser action, several modes, corresponding to several values of the wavevector
q perpendicular to the current, are possible for each kind of phonon. However, when the
system enters the saser regime the first unstable mode of the TA phonons slaves the others,
as also occurs in a laser [44]. This mode is selected by the phonon mirrors (i.e., the walls of
the well) and corresponds to q3 = 0 in the direction parallel to the interfaces. Therefore the
Hamiltonians required to describe the phonon system are

Hph = HLO + HL̃O + HTA (15)

with

HLO =
∑
q1

h̄ω1b
†
1q1

b1q1 (16)

HL̃O =
∑
q2

(h̄ω2 − ih̄κ2)b
†
2q2

b2q2 (17)

HTA = (h̄ω3 − ih̄κ3)b
†
3b3 (18)

where h̄ω1, h̄ω2, h̄ω3 are the energies for LO, L̃O and TA phonons respectively and b
†
j , bj are

the creation and annihilation operators for phonons. Here we introduced two imaginary terms
ih̄κ2 and ih̄κ3 that take into account the decay by anharmonicity of the L̃O phonons and the
escape of the TA phonons, respectively. The decay of the LO phonons is described in detail
by the term Hph−ph. This term is important because it describes the stimulated emission of
TA phonons which is the main process in our device.

3.3. The electron–phonon interaction

The electron–phonon interaction is relevant only inside the well. Therefore the e–ph Hamil-
tonian is written as

He−ph =
∑
kk′

gkk′(c
†
0k′c0kb

†
1q + c

†
0k
c0k′b1q) (19)

where gkk′ is the transition matrix element connecting a state of sub-band ε0̄k with wavevector
parallel to the interface k and the state of the other sub-band ε0k′ with wavevector k′. The LO
phonon wavevector is q = k′ − k. The first term in (19) describes the LO phonon emission
whereas the second describes the phonon absorption. In order to recover the translational
symmetry in the xy-plane we take an average over k′ as was done in reference [13]. Therefore
we can write the Hamiltonian as

He−ph =
∑

k

He−ph,k (20)

where

He−ph,k = g(c
†
0kc0kb

†
1k + c

†
0k
ckb1k). (21)

We will show in the next section that the electron–phonon interaction mixes the ε0- and ε0̄-
states, producing two polaronic branches.
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In a previous work [13] this matrix element was calculated using the simplest electron and
phonon states reliable for this system [45–47]. Here we calculate the matrix element gkk′ using
the more realistic phonon states in the continuum model introduced by Huang and Zhu [48,49]
which are similar to those obtained in more sophisticated microscopic calculations [50–52].

The effective coupling g is obtained by averaging over k and k′. The averaging procedure
is shown in appendix A. It is done in such a way that, from this effective g, one obtains the
same LO phonon emission rate w as is calculated from gkk′ .

The effective g as a function of the applied bias is shown in figure 4. Figure 5 shows
the transition rate w calculated from g in comparison with that used in reference [13] using
the basis of Licari and Evrard [45, 49]. As was discussed in that previous paper [13] the
precise value of w is not relevant to the saser intensity for most of the applied potentials V .
Nevertheless, the value of g is important because it determines the separation of the polaronic
branches. For this reason the use of the more appropriated basis of Huang and Zhu is important
in this work.

50 60 70 80 90 100 110

0

1

2

3

4

5

 g
 g'g

 (
m

eV
)

V (mV)

Figure 4. The effective electron–phonon matrix element g as a function of V . The solid line g

shows the result obtained using the model of Huang and Zhu. The dotted line g′ is the result for
the slab model of Licari and Evrard.

3.4. The phonon–phonon interaction

In this paper the phonon–phonon interaction that produces the decay of LO phonons by
anharmonicity will be studied using the simplest model treated by Klemens [53]. The phonon–
phonon Hamiltonian can be written as

Hph−ph = γ (b1b
†
2b

†
3 + b

†
1b2b3). (22)

This Hamiltonian describes the decay LO → L̃O+TA and its inverse process (recombination).
Standard perturbation theory gives for this interaction a decay rate [53] of

dn1

dt
= γ0[(n1 + 1)n2n3 − n1(n2 + 1)(n3 + 1)]. (23)
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Figure 5. The LO phonon emission rate obtained using the g of Huang and Zhu is shown by the
solid line w. The rate obtained from the g′ of the slab model is represented by the dotted line w′.

4. The solution of the Hamiltonian

The Hamiltonian used here to calculate the incoming current (which is an important parameter
of the kinetic equations that govern the populations of the system) includes an electronic part,
the LO phonon term and the effective electron–phonon interaction:

H =
∑
j

εj c
†
j cj +

∑
j �=1̄,0,0̄

v(c
†
j cj+1 + c

†
j+1cj ) + h̄ω1b

†
1b1 + v1̄0̄(c

†
1̄
c0̄ + c

†
0̄
c1̄)

+ v1̄0(c
†
1̄
c0 + c

†
0c1̄) + v0̄1(c

†
0̄
c1 + c

†
1c0̄) + v01(c

†
0c1 + c

†
1c0)

+ g(c
†
0c0̄b

†
1 + c

†
0̄
c0b1). (24)

A new formalism first introduced by Anda et al [9] and used later by Bonc̆a and Trugman [54]
is applied to solve the system. Let us define the operators [9]

On
j = 1√

n!
cjb

n
1 . (25)

Here we use n for the LO phonon number instead of n1, because there is only one kind of
phonon in this section. The operators O†n

j create an orthonormal basis |jn〉 of states with an
electron in the Wannier orbital localized at site j and n LO phonons inside the well, i.e.,

|jn〉 = O†n
j |0〉. (26)

They are the eigenstates of H when g = 0. The equations of motion for these operators are
calculated from

ih̄
dOn

j

dt
= [On

j ,H]. (27)
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For the stationary state we obtain

h̄ωOn
j = (εj + nh̄ω1)On

j + v(On
j+1 + On

j−1) + gnc
†
0c0̄On−1

j j �= 1̄, 0, 0̄, 1

h̄ωOn

1̄
= (ε1̄ + nh̄ω1)On

1̄
+ v1̄0̄On

0̄
+ v1̄0On

0 + vOn

2̄
+ gnc

†
0c0̄On−1

1̄

h̄ωOn
0 = (ε0 + nh̄ω1)On

0 + v1̄0On

1̄
+ v01On

1 + gnc
†
0c0̄On−1

0 + gOn

0̄
b

†
1

h̄ωOn

0̄
= (ε0̄ + nh̄ω1)On

0̄
+ v1̄0̄On

1̄
+ v0̄1On

1 + gnc
†
0c0̄On−1

0̄
+ gOn+1

0

h̄ωOn
1 = (ε1 + nh̄ω1)On

1 + v0̄1On

0̄
+ v01On

0 + vOn
2 + gnc

†
0c0̄On−1

1 .

(28)

The eigenfunctions of the Hamiltonian can be expanded as

|φ〉 =
∑
j,n

anj |jn〉. (29)

By orthonormality, we get the coefficients of |φ〉 as anj = 〈jn|φ〉.
In terms of the operators On

j ,

anj = 〈0|On
j |φ〉. (30)

Multiplying equation (28) by 〈0| on the left and by |φ〉 on the right we obtain the eigenvalue
equations for these coefficients:

h̄ωanj = (εj + nh̄ω1)a
n
j + v(anj−1 + anj+1) j �= 1̄, 0, 0̄, 1

h̄ωan
1̄

= (ε1̄ + nh̄ω1)a
n

1̄
+ van

2̄
+ v1̄0a

n
0 + v1̄0̄a

n

0̄

h̄ωan0 = (ε0 + nh̄ω1)a
n
0 + v1̄0a

n

1̄
+ v01a

n
1 +

√
ngan−1

0̄

h̄ωan
0̄

= (ε0̄ + nh̄ω1)a
n

0̄
+ v1̄0̄a

n

1̄
+ v0̄1a

n
1 +

√
n + 1gan+1

0

h̄ωan1 = (ε1 + nh̄ω1)a
n
1 + v0̄1a

n

0̄
+ v01a

n
0 + van2 .

(31)

This system is represented diagrammatically in figure 6.

w√n+1

1 0

v-
10

0

1 jv-
01

v v v v

j
v- -

10

v
01

1 0 1 jj

0

n

n+1

Figure 6. The diagram for the hopping terms in the presence of e–ph interaction. We have a
semi-infinite chain in the vertical direction. However, the links to peaks that are above the Fermi
level or below the bottom of the conduction band at the emitter can be cut out.

To obtain a strong LO phonon emission it is necessary for the energy difference to reach
the resonant condition �ε ≈ h̄ω1. If the scattering region is isolated, i.e., if the effective
hopping terms that connect the well with the external region are put equal to zero, we obtain

h̄ωan
0̄

= ε′
0̄a

n

0̄
+

√
n + 1gan+1

0 (32)

h̄ωan+1
0 = ε′

0a
n+1
0 +

√
n + 1gan

0̄
(33)
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where we have used the notation ε′
0̄

= ε0̄ + nh̄ω1 and ε′
0 = ε0 + (n + 1)h̄ω1.

The eigenvalues for these equations are

h̄ωp1,p2 = ε′
0̄

+ ε′
0

2
±

√(
ε′

0̄
− ε′

0

2

)2

+ (n + 1)g2. (34)

The energies h̄ωp1 and h̄ωp2 are the energies of the coupled electron–phonon system, i.e., the
polaron energies. We can see in figure 7 the behaviour of the electron energies ε′

0̄
and ε′

0 and
the polaron energies h̄ωp1 and h̄ωp2 when the applied potential V is varied. It is clear from
equation (34) that when the energy difference ε′

0̄
−ε′

0 is much bigger than
√
n + 1g, the energy

of each polaron branch h̄ωpi coincides with either ε′
0̄

or ε′
0, whereas if

√
n + 1g � ε′

0̄ − ε′
0

the separation between branches is 2
√
n + 1g. As can be seen in figure 4, the effective g

increases with the applied potential more rapidly than the difference ε′
0̄

− ε′
0. Therefore,

the polaronic branches do not approximate the electronic levels before they merge below the
bottom of the conduction band. Since the effective hoppings are not zero, these polaronic
levels are shifted and broadened.
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Figure 7. The electronic levels and the polaronic branches as functions of V . ε′
0̄

= ε0̄ is the first

excited level; ε′
0 = ε0 + h̄ω1 is the satellite of the ground state. E0

1 and E0
2 are the lower and higher

polaronic branches, respectively. The current is very small when E0
1 is above the Fermi level of

the emitter εLF or when E0
2 is below the bottom of the conduction band.

The probability for one electron entering the well to find one LO phonon with momentum
q is pq ∼ 〈n1〉/Nq. Here 〈n1〉 is the average LO phonon number and Nq is the number of
wavevectors parallel to the interface. We can estimate Nq ∼ S0/a

2, where S0 is the device
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area and a is the lattice parameter. For the values used here, S0 = 0.5 × 10−3 mm2 and
a = 2.825 Å; Nq is of the order of 7 × 109. The values of 〈n1〉 calculated in this work are less
than 35. Therefore pq ∼ 2 × 10−8. That means that we can put n = 0 (the subscripts 1 and q

were left implicit) in our equations.
The transmittance obtained from the diagram in figure 6 shows peaks that represent, for

g = 0, the ground state, the first excited state and its satellites. Among these peaks only two
are relevant to the current calculation: the first excited state and the satellite of the ground
state. The other contributions are at least four orders of magnitude less than those given by
the two peaks cited above.

When g �= 0, due to the effect of the electron–phonon interaction, this pair of peaks are
mixed in two polaronic branches that anticross.

Since the barriers are broad, the transmittance presents two narrow Lorentzian peaks cor-
responding to each polaronic branch. These Lorentzian forms are used, in appendix B, to
calculate analytical expressions for the input and output currents.

5. Dynamics of electron and phonon populations

In a previous work [13] we derived the kinetic equations that govern the dynamics of electron
and phonon populations in the well. The kinetic equations used in this paper are

dn0̄

dt
= G − w[n0̄(n1 + 1) − n0n1] − R0̄n0̄

dn0

dt
= w[n0̄(n1 + 1) − n0n1] − R0n0

dn1

dt
= w[n0̄(n1 + 1) − n0n1] − γ0[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3]

dn2

dt
= γ0[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3] − κ2n2

dn3

dt
= γ0[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3] − κ3n3.

(35)

In spite of the fact that the first two equations are the same as in reference [13], we have used
here different parameters. First, the LO phonon emission ratew was calculated from the matrix
element g, obtained in section 3.3 using the phonon states proposed by Huang and Zhu [48].
In our previous work the emission rate w was calculated using the simplified model of Licari
and Evrard [4]. Besides, the dependence of w upon the applied bias was approximated in
reference [13] by a step function with a Gaussian tail. Here we calculated that dependence
explicitly; it is shown in figure 5. As we mentioned before, the precise value of w is not
relevant to the dynamics when saser action is already developed. Second (and more important),
the escape rates R0̄ and R0 used in our previous work were obtained following the work of
Jonson [6]. The escape rates in that paper can be interpreted as products of the frequencies
of attempts to escape and the probabilities of tunnelling through the right-hand barrier (i.e.,
the transmittance of that barrier). However, the frequency of attempts was calculated there
using the concept of classical velocity. That concept is not applicable for electrons in the lower
quantum states in the well. Instead of that, we calculate here Rm = 2)Rm

/h̄ where )Rm
is

the contribution of the right-hand barrier to the width of level m. The expressions obtained
here are analogous to those presented by Sols [55]. The values of Rm obtained by this new
procedure are, for the same barrier widths, much less than those calculated in [13]. In order
to study a system with similar characteristics to those of the previously studied system, we
present results for a DBH with thinner barriers. Finally, the input rate G is calculated taking
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into account the electron–phonon interaction. In our previous work it was obtained considering
only the tunnelling through the excited state in the well. Here we consider also the tunnelling
current through the satellite peak and the splitting of the peaks into two polaronic branches.
This represents the main modification in the results presented in this work.

In the last three equations we have changed the stimulated LO phonon decay term
according to the discussion of section 3.4.

In this paper we restrict ourselves to studying the stationary solutions of the kinetic
equations given above:

G − w[n0̄(n1 + 1) − n0n1] − R0̄n0̄ = 0

w[n0̄(n1 + 1) − n0n1] − R0n0 = 0

w[n0̄(n1 + 1) − n0n1] − γ0[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3] = 0

γ0[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3] − κ2n2 = 0

γ0[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3] − κ3n3 = 0.

(36)

From these equations, it is easy to obtain all populations in terms of n3:

n1 = − G − κ3n3(R0̄/w + 1)

G − κ3n3(R0̄/R0 + 1)

n2 = κ3

κ2
n3

n0 = κ3

R0
n3

n0̄ = G − κ3n3

R0̄
.

(37)

Replacing these expressions in any of the equations (36) containing γ0, we get a cubic equation
for n3:

c1c2n
3
3 + [(c2 + 1)c3 − c2c4 + c1c5]n2

3 + [c3 − (c2 + c5 + 1)c4]n3 − c4 = 0 (38)

with only one positive root. Here c1 = κ3(1/R0̄ + 1/R0), c2 = κ3/κ2, c3 = κ3(1/R0̄ + 1/w),
c4 = G/R0̄ and c5 = κ3/γ0.

As the input current G, the LO phonon emission rate w and the escape rates Rm depend
on the accumulated charge in the well, the electron populations have to be calculated self-
consistently. This dependence arises because the level positions depend on the charge. This
was discussed in more detail in reference [13].

From these self-consistent solutions we obtain each population as a function of the applied
voltage V ; these are shown in figures 8 and 9. The saser intensity is the number of TA phonons
that escape the well per ps, i.e., S = κ3n3.

6. Results and conclusions

In this paper we have studied the DBH phonon laser more accurately than previous works
[13,14]. The strong electron–phonon interaction near the saser resonance prevents the satellite
of the ground state and the first excited level from crossing. We have shown that in this system
two polaronic branches appear. As a consequence, the shapes of the G(V ) characteristic curve
and the saser intensity S(V ) are modified.

Moreover, the process of phonon–phonon interaction was considered here in more detail.
In our previous works the expression for the LO phonon decay rate was taken from the
experimental work of Vallée [17]. As can be seen in the work of Klemens [53], that expression
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is valid only for phonons close to equilibrium. We have used instead the full expression (23)
discussed in section 3.4. This causes small changes in the electronic current and the saser
intensity but an important variation of the number of LO phonons in the well.

The results are presented for a DBH system composed of an emitter of pure GaAs, a
left-hand barrier of width bl = 22.6 Å made of AlxGa1−xAs with an aluminium concentration
of x = 0.4 that corresponds to a barrier height V0 = 300 meV, a well of width d = 203.4 Å
of GaAs and a right-hand barrier with the same width and Al concentration as the left-hand
barrier. The device area, S0, was taken equal to 0.5 × 10−3 mm2. This configuration is shown
in figure 1. However, this kind of phonon laser could be built using other structures. For
example, in a well made of InP the dimensions of the system could be matched to the LO
phonon frequency of this compound. The phonons would then decay coherently by emitting
a pair of LA phonons at the middle of the Brillouin zone [17]. However, LA phonons have
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short lifetimes. Therefore they are less important for practical applications.
In our tight-binding model we have considered an integer number of planes separated by

distances a = 2.825 Å. However, the dependence of this lattice parameter on the numerical
results is negligible. The hopping v was chosen, as usual, in order to get a dispersion relation
at the bottom of the conduction band with the experimental effective mass m∗ = 0.067me, i.e.,
v = −h̄2/2m∗a2 = −7150 meV.

The value of γ0 = 0.11 ps−1 was taken from the experimental work of Vallée. The escape
rate for TA phonons was estimated from the group velocity: κ3 = 0.05 ps−1. The decay rate
of L̃O phonons was assumed big (κ2 = 30 ps−1) because they suffer the stimulation of their
decay products. The quantities G, w, R0̄ and R0 depend on the applied voltage, but typical
values are: G ∼ 3000 ps−1, w ∼ 2 ps−1, R0 ∼ 0.025 ps−1 and R0̄ ∼ 0.05 ps−1.

The characteristic curve G(V ) is shown in figure 8. Since we consider a fully resonant
tunnelling and since the Fermi energy of the system is smaller than the energy difference
between the two lower levels in the well, the current at the valley between the first and second
peaks is negligible. In this work we are interested in the region near the saser resonance.
Therefore, we show here results for the current around the second peak, which is formed by
the superposition of the two polaronic branches. We can see that for small applied bias there is
only the contribution of the excited state. The satellite peak only contributes when the peaks
corresponding to the ground and the first excited states have a separation sufficiently large to
permit transitions between them, via the emission of LO phonons.

The intensity of the phonon beam S(V ) follows, after a short instability region, the shape
of the current curve. It is easy to show that, when the number of TA phonons n3 is greater than
104, all the terms in equation (38) except the quadratic and cubic ones can be neglected. From
that simplified equation we get a linear relation between the saser intensity S(V ) = κ3n3 and
the current G(V ). This intensity (measured in phonons per ps) is, for the system studied here,
of the same order of magnitude as the intensity (in photons per ps) of a commercial laser with
a power of about 0.3 mW. The current is directly proportional to the device area. That means
that the saser intensity can be easily modified. The linear relation between the amplitude of
the phonon beam and the current implies that it could be easily modulated by modulating the
input current.

When the electron–phonon interaction begins, the charge in the well increases. This
happens because R0 < R0̄; thus the effective rate of electron escape from the well decreases.
This produces an instability in the G(V ) characteristics and the saser intensity S(V ) at the
beginning of the LO phonon emission. The incoming electrons decay to the ground state,
then the charge in the well increases sharply. The electron–electron repulsion pushes up
the resonant levels in the well and thus they separate, taking the system out of resonance.
Therefore the electrons escape directly from the excited level and the charge in the well begins
to diminish. When the characteristic times w−1 for the LO phonon emission and R−1

0̄
for the

escape from the excited level are comparable, this produces oscillations that could be chaotic.
In the region of instability we cannot obtain self-consistent solutions of equations (36). The
iterative process of self-consistency does not converge, which means that the system (35) has
no stationary solutions. Similar non-linear effects produce chaotic behaviour in other DBH
systems [56–58].

Another consequence of the interrelation between the e–ph interaction and the charge
accumulated in the well (the e–e interaction) is the enhancement of the intrinsic bistability [59].
Therefore the hysteresis loop in the current–voltage characteristic becomes more pronounced.

Several effects that were not considered here could restrict the working of the proposed
device. The roughness of the barrier walls and the ends of the material could affect the multiple
reflections necessary to select just one mode of TA phonons. If the temperature is not low
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enough, the noise due to the thermal phonon background could overcome the coherent beam
amplitude. The sum of all leak sources has to be smaller than the total gain of the system to
warrant the saser action.

The dynamics of the system has to be studied, mainly in the region in which the
stationary solutions do not exist. This work is under way and preliminary results were already
presented [60]. The model presented here is based on the kinetic equations for the average
populations in the well. Quantum fluctuations are not important for large populations, as is
the case for electrons and TA phonons. Nevertheless, as the lifetime of LO phonons is very
small, their population is small. Therefore these fluctuations are important for them. A full
quantum treatment of the system is desirable. This can be done by generalizing the formalism
of section 4 to the complete Hamiltonian. This work is being done and the results will be
published elsewhere.
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Appendix. The electron–phonon interaction matrix element

Here we describe the steps used to calculate the matrix element g.
Inside the well, long-wavelength optical phonons can be classified as LO and TO confined

modes and interface phonons. The latter have four branches, which, for a symmetric
AlGaAs/GaAs/AlGaAs DBH, are the GaAs-like symmetric (S−) and antisymmetric (A−)
modes, and the corresponding AlGaAs-like modes S+ and A+ [62].

The relative strength of the interaction between these modes and electrons depends upon
qd, where q is the phonon wavevector perpendicular to the current and d is the well width. It
can be seen from the energy and momentum conservation relations that, close to the resonance,
q is small. For small values of qd , the interaction between electrons and interface phonons
can be important for DBH with rather thin wells (as, for example, in the case of reference [2],
where the satellite phonon peak in the characteristic curve was observed for the first time).
Our device has a relatively thick well (about four times the thickness of that of reference [2]).
Since the relative importance of the interface phonons decreases strongly when the well width
d increases, the effect of these phonons on the electron dynamics should be negligible in our
case. This is further confirmed by the results [63] of calculations of the emission rates of
confined LO and interface phonons. Moreover, since it is well known (e.g., [64]) that the
electron–TO phonon interaction is much weaker than the Fröhlich one, we restrict ourselves
to studying the interaction between electrons and just confined LO phonons.

Following the work of Weber and Ryan [49] we consider the general expression for
the electron–phonon interaction in the case of LO phonon emission with many possible
wavevectors q parallel to the interfaces. The Hamiltonian is

He−ph = λ(S0d)
−1/2

∑
nq

eiq·rtn(q)un(z)[bn(q) + b†
n(−q)] (A.1)

where λ2 = 4πe2h̄ω1(ε
−1
∞ − ε−1

0 ), S0 is the device area and d is the well width. The parallel
component of the displacement un(z) is taken from the work of Rudin and Reinecke [61] which
modified the Huang and Zhu model [48] for quantum wells:

un(z) =
{

sin(µnπz/d) + Cnz/d for n = 3, 5, . . .

cos(µnπz/d) − (−1)n/2 for n = 2, 4, . . ..
(A.2)
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In this model the first confined mode corresponds to n = 2. This is the only mode that we take
into account. The integral tn is given by equation (A1b) of Weber and Ryan:

t2 = (3q2 + 4π2/d2)−1/2.

Now we calculate the matrix element of He−ph connecting states |0̄, n1〉 and |0, n1 + 1〉. The
electron wavefunctions are taken as the simplest for an infinite rectangular well, i.e.,

ψm = (2/S0d)
−1/2 sin(m′πz/d) exp(ikm · r)

where m′ = 1, 2 for m = 0, 0̄ respectively. The matrix element is

gkk′ = 〈0̄, n1|He−ph|0, n1 + 1〉 = λ(S0d)
−1/2

∑
q

t2(q)
√
n1 + 1

∫
d3r eiq·rψ∗

0u2(z)ψ0̄.

(A.3)

After integration we obtain

gkk′ = λc(S0d)
−1/2

∑
q

t2(q)
√
n1 + 1δq−k+k′ (A.4)

with c = 32/(15π). In order to get an effective g for the simplified Hamiltonian (21) that
gives the same LO emission rate, we consider that w, obtained from the Fermi golden rule, is
proportional to

∑
q |gq|2. Therefore we define

g ≡
√∑

q

|gq|2 =
√
(S0/4π2)

∫
dq |gq|2. (A.5)

This last integral has to be performed between the same limits as in the calculation of w, i.e.,
up to a qmax given by the conservation of crystalline momentum and energy. The result is

g = λc√
12πd

{
ln

[
3

4

(
qmax

q0

)2

+ 1

]}1/2

(A.6)

where

q0 = π

d
and q2

max = 2m∗

h̄2

[
(εF − ε0̄) + (εF − ε′

0) +
√
(εF − ε0̄)(εF − ε′

0)

]
.

We can see that for the case where ε0̄ = ε′
0 we get qmax = 2kmax , as expected.

Appendix B. The calculation of the current

In this appendix we describe the way to obtain the analytical expressions for the incoming and
the outgoing electronic currents in the saser device. As was done in section 4, we treat here
just the LO phonons. We assume here that there are n phonons inside the well.

From the expansion (29) it is immediately apparent that the average number of electrons
at site j is

〈nj 〉 =
∑
n

an∗
j anj . (B.1)

From the equation of motion for the operators (27) we obtain, for j outside the DBH,

ih̄
danj
dt

= (εj + nh̄ω1)a
n
j + v(anj−1 + anj+1). (B.2)

Taking the derivative of (B.1) and using (B.2), we obtain the continuity equation

d〈nj 〉
dt

= −(Gn
j − Gn

j−1) (B.3)
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where the contribution of an electron going through channel n to the particle current is

Gn
j = 4v

h̄
Im(a∗n

j+1a
n
j ). (B.4)

The total current is obtained by summing over all channels n and integrating this expression
over the Fermi sphere at the emitter:

Gj = 4v

h̄

∑
occ

∑
n

Im(a∗n
j+1a

n
j ). (B.5)

It is easy to show that, for the stationary solutions, this expression does not depend on j .
We will obtain now the expression for the current in terms of the reflectance and the

transmittances of the double barrier. Outside the DBH, where the profile is flat, the solutions
of equations (31) for the coefficients anj are plane waves. On the right we have transmitted
waves:

anj = An
T eik′

nzj j � 1 (B.6)

where zj is the position of plane j , An
T is the amplitude of the transmitted wave and the k′

n

satisfy the dispersion relation

h̄ω = nh̄ω1 + 2v[cos(k′
na) − 1] − eV .

On the left we have two possibilities: if the channel n is above the bottom of the conduction
band, the solutions are incident and reflected plane waves:

anj = An
I eiknzj + An

Re−iknzj j � −1. (B.7)

Otherwise we have evanescent modes:

anj = An
Eeκnzj j � −1. (B.8)

Here An
I , An

R and An
E are the amplitudes of the incident wave, the reflected wave and the

evanescent mode, respectively. The kn fulfil the dispersion relation

h̄ω = nh̄ω1 + 2v[cos(kna) − 1]

and the κn satisfy

h̄ω = nh̄ω1 + 2v[cosh(κna) − 1].

In terms of the amplitudes for the incident and reflected waves, the expression for the
incoming current becomes

G = 4v

h̄

∑
occ

(|A0
I |2 − |A0

R|2) sin(k0a) (B.9)

because the evanescent mode does not contribute to the current. For the outgoing current, the
result is

G = 4v

h̄

∑
occ

∑
n

|An
T |2 sin(k′

na). (B.10)

It is easy to prove that, for the stationary states (the only ones that we studied here), the
incoming and outgoing currents are the same. The summation over the occupied states can be
replaced by an integral over the Fermi sphere at the emitter. The integral over k parallel to the
interfaces produces a factor (k2

F −k2
z ) that can expressed in terms of (εLF −ε) by approximating

the dispersion relation at the bottom of the conduction band by its first (quadratic) term, i.e.,
ε = h̄2k2

z /(2m
∗). Therefore we can express the incoming current (B.9) as

G = S0

2π2

m∗

h̄3

∫ εLF

0

(1 − R)

(1 + R + T 0 + T 1)
(εLF − ε) dε (B.11)
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and the outgoing current is written as

G = S0

2π2

m∗

h̄3

∫ εLF

0

[T 0 sin(k′
0a) + T 1 sin(k′

1a)]

(1 + R + T 0 + T 1) sin(k0a)
(εLF − ε) dε. (B.12)

The denominator 1 + R + T 0 + T 1 comes from the normalization of the wavefunction. The
factor sin(k0a) in the incoming current cancels with the unidimensional density of states at
the emitter: ρ(ε) = [−2va sin(k0a)]−1. In the expressions above, R is the reflectance and
T 0 and T 1 the transmittances through the channels without phonons and with one phonon,
respectively. They are defined as usual: R = |r|2, T 0 = |t0|2, T 1 = |t1|2, where r ≡ A0

R/A
0
I ,

t0 ≡ A0
T /A

0
I , t1 ≡ A1

T /A
0
I are the Fresnel reflection and transmission coefficients. We define

also a Fresnel coefficient for the evanescent mode: rE ≡ A0
E/A

0
I . There is no current on

the left through channel 0, as expected, because a∗0
j+1a

0
j is real for j � −1. Therefore the

coefficient rE is not relevant to the current.
To solve the equations (31) we have to connect the expressions given above for the

coefficients anj on the left and on the right of the DBH. To do so, we will make some
approximations to uncouple the system.

The solution of the diagram of figure 6 has peaks for the ground state, the first excited state
and all its satellites. The peaks relevant to the transport are those related to the first excited
level (the channel with n phonons that passes through 0̄) and the satellite of the ground state
(the channel with n+ 1 phonons through 0). The channel with n phonons that passes through 0
gives the contribution of the ground state which is far below the bottom of the conduction band
at the emitter. This contribution is completely negligible. The same happens for the channel
corresponding to the satellite of the excited state (that passes through 0̄ with n + 1 phonons),
which is far above the Fermi level. Therefore it is sufficient to solve the simplified diagram of
figure B1.

LO

1 0 1 jv-
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v v v v

j
v- -

10

1 1 jj
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v-
10

v
01

v v v v

Figure B1. A simplified version of the diagram of figure 6. The links with the second and higher
satellites and the hoppings that produce the peak corresponding to the ground state and the first
satellite of the first excited state were cut out.

We will show the procedure for the case in which the number of LO phonons in the well
is very small. This was suggested by the results of our previous work and confirmed by the
present results. We can consider that for each k the average LO phonon number is zero. The
system to solve is, for n = 0,

h̄ωa0
j = εja

0
j + v(a0

j−1 + a0
j+1) j �= 1̄, 0, 0̄, 1 (B.13)

h̄ωa0
1̄

= va0
2̄

+ ε1̄a
0
1̄

+ v1̄0̄a
0
0̄

(B.14)

h̄ωa0
0̄

= v1̄0̄a
0
1̄

+ ε0̄a
0
0̄

+ ga1
0 + v0̄1a

0
1 (B.15)

h̄ωa0
1 = v0̄1a

0
0̄

+ ε1a
0
1 + va0

2 . (B.16)
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This system is coupled with that for n = 1:

h̄ωa1
j = (εj + h̄ω1)a

1
j + v(a1

j−1 + a1
j+1) j �= 1̄, 0, 0̄, 1 (B.17)

h̄ωa1
1̄ = (ε1̄ + h̄ω1)a

1
1̄ + va1

2̄ + v1̄0a
1
0 (B.18)

h̄ωa1
0 = v1̄0a

1
1̄ + ga0

0̄
+ (ε0 + h̄ω1)a

1
0 + v01a

1
1 (B.19)

h̄ωa1
1 = v01a

1
0 + (ε1 + h̄ω1)a

1
1 + va1

2 . (B.20)

We are interested in obtaining the relation between the amplitudes An
I , An

R,A
n
T and An

E . From
equations (B.16) and (B.20) we get

a0
0̄

= A0
T

v

v0̄1
(B.21)

a1
0 = A1

T

v

v01
. (B.22)

From (B.14) and (B.18) we get

a0
2̄

= 2 cos(k0a)a
0
1̄

− v1̄0̄

v0̄1
A0

T (B.23)

a1
2̄ = 2 cosh(κ1a)a

1
1̄ − v1̄0

v01
A1

T . (B.24)

Using the results (B.21), (B.22), (B.23) and (B.24) we get the system

a0
1̄

= αA0
T + βA1

T

a1
1̄ = γA0

T + ξA1
T

a0
2̄

= 2 cos(k0a)a
0
1̄

− v1̄0̄

v0̄1
A0

T

a1
2̄ = 2 cosh(κ1a)a

1
1̄ − v1̄0

v01
A1

T

(B.25)

where

α ≡ [(−ε0̄ + h̄ω)v/v0̄1 − v0̄1eik′
0a]

v1̄0̄

β ≡ − g

v1̄0̄

v

v01

γ ≡ − g

v1̄0

v

v0̄1

ξ ≡ [(−ε0 − h̄ω1 + h̄ω)v/v01 − v01eik′
1a]

v1̄0
.

(B.26)

From the relations (B.7) and (B.8) we get for a0
1̄
, a1

1̄
, a0

2̄
and a1

2̄

a0
1̄

= A0
I e−ik0a + A0

Reik0a

a1
1̄ = AEe−κ0a

a0
2̄

= A0
I e−2ik0a + A0

Re2ik0a

a1
2̄ = AEe−2κ1a.

(B.27)
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Using (B.27) and (B.25) we get

αt0 + βt1 − reik0a = e−ik0a(
2α cos(k0a) − v1̄0̄

v0̄1

)
t0 + 2β cos(k0a)t

1 − re2ik0a = e−2ik0a

γ t0 + ξ t1 − rEe−κ1a = 0

−v1̄0

v01
t1 + rE = 0.

(B.28)

To write the solutions of the system (B.28) in a compact form we define the complex energies

ε̃0 ≡ ε′
0 + �0 − i)0 (B.29)

ε̃0̄ ≡ ε0̄ + �0̄ − i)0̄ (B.30)

where �0̄, �0, )0̄ and )0 are defined as

�0̄ ≡ v2
0̄1

v
cos(k′

0a) +
v2

1̄0̄

v
cos(k0a) (B.31)

�0 ≡ v2
01

v
cos(k′

1a) +
v2

1̄0

v
e−(κ1a) (B.32)

)0̄ ≡ −v2
0̄1

v
sin(k′

0a) − v2
1̄0̄

v
sin(k0a) (B.33)

)0 ≡ −v2
01

v
sin(k′

1a). (B.34)

In terms of these complex energies the Fresnel coefficients are written as

t0 = A(h̄ω)v0̄1(h̄ω − ε̃0) (B.35)

t1 = A(h̄ω)gv01 (B.36)

r = −1 + A(h̄ω)v0̄1̄(h̄ω − ε̃0) (B.37)

rE = A(h̄ω)gv1̄0. (B.38)

where

A(h̄ω) = −2i sin(k0a)v1̄0̄/v

(h̄ω − ε̃0̄)(h̄ω − ε̃0) − g2
. (B.39)

If we put g = 0 in equations (B.35), (B.36) and (B.37), we get, for the current, two Lorentzian
peaks at energies εm+�m of width)m. This result is consistent with those of Wingreen et al [5]
and Sols [55] obtained using the Green function formalism for uncoupled resonant peaks.

If we disconnect the well (taking vjm = 0) but keep the electron–phonon interaction
(g �= 0), we recover the eigenvalue system (33) whose solutions are given by (34).

The denominator of expressions (B.35), (B.36) and (B.37) is quadratic in h̄ω. It has two
complex roots that are the poles of the Fresnel coefficients t1, t0 and r:

E2,1 = ( ε̃0̄ + ε̃0)

2
± 1

2

√
( ε̃0 − ε̃0̄)

2 + 4g2 Re(E2) > Re(E1). (B.40)

In terms of these complex eigenvalues we can write

A(h̄ω) = −2i sin(k0a)v1̄0̄/v

(h̄ω − E1)(h̄ω − E2)
. (B.41)

We can easily estimate the positions E0
i and the widths )i of each of the polaronic peaks,

which are given by the real and imaginary parts of Ei , respectively (equation (B.40)), as

Ei = E0
i − i)i i = 1, 2. (B.42)
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By defining the variations δε = ε′
0 − ε0̄, δ� = �0 − �0̄ and δ) = )0 − )0̄, we can write

ε̃0 − ε̃0̄ = δε + δ�− i δ). As the product (δε + δ�)δ) is very small, we can approximate the
square root in (B.40) by

1

2

√
( ε̃0 − ε̃0̄)

2 + 4g2 ∼= 1

2

[
(δε + δ�)2 + 4g2

]1/2
+

i

2

(δε + δ�)δ)[
(δε + δ�)2 + 4g2

]1/2 . (B.43)

Now, if we define

EM = 1

2

[
(ε0̄ + �0̄) + (ε′

0 + �1)
]

(B.44)

�M = [
(δε + δ�)2 + 4g2

]1/2
(B.45)

)M = 1

2
()0 + )0̄) (B.46)

�)M = (δε + δ�)δ)[
(δε + δ�)2 + 4g2

]1/2 (B.47)

we can write

E0
2,1 = EM ± 1

2
�M (B.48)

)2,1 = )M ∓ 1

2
�)M. (B.49)

Therefore the peaks are localized below and above EM , separated by �M , and the widths of
the peaks are approximately the same, because �) is very small. In practice we calculate Ei

directly from the definition (B.40).
Let us write the expression to be integrated in (B.11) or (B.12) as

F(h̄ω)L1(h̄ω)L2(h̄ω) (B.50)

where the Lorentzians

Li (h̄ω) = )i

[(h̄ω − E0
i )

2 + )2
i ]

(B.51)

are very narrow. As the peak labelled 1 is always below the peak 2, we can separate the
integrals into one over the interval [0, EM ] and another over the interval [EM, εLF ]:∫ εLF

0
F(h̄ω)L1(h̄ω)L2(h̄ω) d(h̄ω)

≈ F(E0
1)L2(E

0
1)

∫ EM

0
L1(h̄ω) d(h̄ω) + F(E0

2)L1(E
0
2)

∫ εLF

EM

L2(h̄ω) d(h̄ω).

(B.52)

In these expressions we have exploited the fact that in the very small region in which one
Lorentzian is not negligible the other factors are essentially constant. The integrals in (B.52)
are elementary:∫ εLF

0
F(h̄ω)L1(h̄ω)L2(h̄ω) d(h̄ω)

≈ F(E0
1)L2(E

0
1)[I1(EM) − I1(0)] + F(E0

2)L1(E
0
2)[I2(ε

L
F ) − I2(EM)] (B.53)

with

Ii (h̄ω) = arctan

(
h̄ω − E0

i

)i

)
. (B.54)
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We have performed also the exact (numerical) integrations for the current. The difference is
negligible. From the expressions (B.34) and (B.33) we separate out the contribution of the
escape through the right-hand barrier. For )0 this is the only contribution because there is no
current below the bottom of the conduction band. In the case of )0̄, that contribution is given
by the first term of the right-hand side of (B.33). As was discussed in section 5, we get

R0̄ = −2v2
0̄1

h̄v
sin(k′

0a)

R0 = −2v2
01

h̄v
sin(k′

1a).

(B.55)

For a given barrier width, the escape rates given by (B.55) are appreciably smaller than those
obtained following the work of Jonson [6].
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[50] Rücker H, Molinari E and Lugli P 1991 Phys. Rev. B 44 3463
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